
Cerulean Documentation
Release 0.3.8.dev

Lourens Veen

Mar 12, 2021

Contents:

1 Tutorial 3
1.1 Accessing files . 3
1.2 Running commands . 5
1.3 Submitting jobs . 5
1.4 More information . 6

2 API Reference 7
2.1 cerulean package . 7

3 Indices and tables 25

Python Module Index 27

Index 29

i

ii

Cerulean Documentation, Release 0.3.8.dev

Cerulean is a Python 3 library for connecting to HPC compute resources, such as compute clusters and supercomputers.
It lets you copy files between local and SFTP filesystems using a pathlib-like API, it lets you start processes locally
and remotely via SSH, and it lets you submit jobs to schedulers such as Slurm and Torque/PBS.

Cerulean supports Python 3.4 and later.

Contents: 1

Cerulean Documentation, Release 0.3.8.dev

2 Contents:

CHAPTER 1

Tutorial

Welcome to the Cerulean tutorial. This tutorial demonstrates the basics of using Cerulean: using local and remote file
systems, running processes locally and remotely, and using schedulers.

To install Cerulean, use

pip install cerulean

If you’re using Cerulean in a program, you will probably want to use a virtualenv and install Cerulean into that,
together with your other dependencies.

1.1 Accessing files

The file access functions of Cerulean use a pathlib-like API, but unlike in pathlib, Cerulean supports remote file
systems. That means that there is no longer just the local file system, but multiple file systems, and that Path objects
have a particular file system that they are on.

Of course, Cerulean also supports the local file system. To make an object representing the local file system, you use
this:

import cerulean

fs = cerulean.LocalFileSystem()

And then you can make a path on the file system using:

import cerulean

fs = cerulean.LocalFileSystem()
my_home_dir = fs / 'home' / 'username'

In this example, my_home_dir will be a cerulean.Path object, which is very similar to a normal Python
pathlib.PosixPath. For example, you can read the contents of a file through it:

3

Cerulean Documentation, Release 0.3.8.dev

import cerulean

fs = cerulean.LocalFileSystem()
passwd_file = fs / 'etc' / 'passwd'

users = passwd_file.read_text()
print(users)

Note that cerulean.Path does not support open(). Cerulean can copy files and stream data from and to them,
but it does not offer random access, as not all remote file access protocols support this.

You can use the / operator to build paths from components as with pathlib, and there’s a wide variety of supported
operations. See the API documentation for cerulean.Path for details.

1.1.1 Remote filesystems

Cerulean supports remote file systems through the SFTP protocol. (It uses the Paramiko library internally for this.)
Accessing a remote file system through SFTP goes like this:

import cerulean

credential = cerulean.PasswordCredential('username', 'password')
with cerulean.SshTerminal('remotehost.example.com', 22, credential) as term

with SftpFileSystem(term) as fs:
my_home_dir = fs / 'home' / 'username'
test_txt = (my_home_dir / 'test.txt').read_text()
print(test_txt)

Since we are going to connect to a remote system, we need a credential. Cerulean has two types of credentials,
PasswordCredential and PubKeyCredential. They are what you expect, one holds a username and a
password, the other a username, a local path to a public key file, and optionally a passphrase for the key.

Once we have a credential, we can open a terminal. Like a terminal window on your desktop, a Terminal object lets
you run commands. Cerulean supports local terminals and remote terminals through SSH. Since the SFTP protocol
is an extension to the SSH protocol, we need an SSH terminal connection first, so we make one, connecting to a
host, on a port, with our credential. This terminal holds an SSH connection, which needs to be closed when we are
done with it. SshTerminal is therefore a context manager and needs to be used in a with statement. Note that
LocalTerminal is not a context manager, as it does not hold any resources.

Once we have the terminal, we can make an SftpFileSystem object, and from there it works just like a local file
system. Just like SshTerminal, SftpFileSystem is a context manager, so we need another with-statement.

1.1.2 Copying files

When running jobs on HPC machines, you often start with copying the input files from the local system to the HPC
machine, and finish with copying the results back. Cerulean’s copy() function takes care of this for you, and works
as you would expect:

import cerulean

local_fs = cerulean.LocalFileSystem()

credential = cerulean.PasswordCredential('username', 'password')
with cerulean.SshTerminal('remotehost.example.com', 22, credential) as term

(continues on next page)

4 Chapter 1. Tutorial

Cerulean Documentation, Release 0.3.8.dev

(continued from previous page)

with SftpFileSystem(term) as remote_fs:
input_file = local_fs / 'home' / 'username' / 'input.txt'
job_dir = remote_fs / 'home' / 'username' / 'my_job'
cerulean.copy(input_file, job_dir)

run job and wait for it to finish

output_file = local_fs / 'home' / 'username' / 'output.txt'
cerulean.copy(job_dir / 'output.txt', output_file)

1.2 Running commands

If you have read the above, then the secret is already out: running commands using Cerulean is done using a
Terminal. For example, you can run a command locally using:

import cerulean

term = cerulean.LocalTerminal()

exit_code, stdout_text, stderr_text = term.run(
10.0, 'ls', ['-l'], None, '/home/username')

The first argument to Terminal.run() is a timeout value in seconds, which determines how long Cerulean will
wait for the command to finish. The second argument is the command to run, followed by a list of arguments. Next is
an optional string that, if you specify it, will be fed into the standard input of the program you are starting. The final
argument is a string specifying the working directory in which to execute the command.

The function returns a tuple containing three values: the exit code of the process (or None if it didn’t finish in time), a
string containing text printed to standard output, and a string containing text printed to standard error by the command
you ran.

Running commands remotely through SSH of course works in exactly the same way, except you use an
SshTerminal, as above:

import cerulean

credential = cerulean.PasswordCredential('username', 'password')
with cerulean.SshTerminal('remotehost.example.com', 22, credential) as term

exit_code, stdout_text, stderr_text = term.run(
10.0, 'ls', ['-l'], None, '/home/username')

1.3 Submitting jobs

On High Performance Computing machines, you don’t run commands directly. Instead, you submit batch jobs to a
scheduler, which will place them in a queue, and run them when everyone else in line before you is done. The most
popular scheduler at the moment seems to be Slurm, but Cerulean also supports Torque/PBS.

The usual way of working with a scheduler is to use ssh to connect to the cluster, where you run commands that
submit jobs and check on their status. Cerulean works in the same way:

1.2. Running commands 5

Cerulean Documentation, Release 0.3.8.dev

import cerulean
import time

credential = cerulean.PasswordCredential('username', 'password')
with cerulean.SshTerminal('remotehost.example.com', 22, credential) as term

sched = cerulean.SlurmScheduler(term)

job = cerulean.JobDescription()
job.name = 'cerulean_test'
job.command = 'ls'
job.arguments = ['-l']

job_id = sched.submit_job(job)

time.sleep(5)
status = sched.get_status(job_id)

if status == cerulean.JobStatus.DONE:
exit_code = sched.get_exit_code()
print('Job exited with code {}'.format(exit_code))

Of course, if you intend to run your submission script on the head node, then the scheduler is local, and you
want to use a LocalTerminal with your SlurmScheduler. If your HPC machine runs Torque/PBS, use a
TorqueScheduler instead.

1.4 More information

To find all the details of what Cerulean can do and how to do it, please refer to the API documentation.

6 Chapter 1. Tutorial

CHAPTER 2

API Reference

2.1 cerulean package

The cerulean module is the main API for Cerulean.

This module contains all the functions you need to use Cerulean.

Below, you will also find documentation for submodules. That is developer documentation, you do not need it to use
Cerulean.

cerulean.copy(source_path: cerulean.path.Path, target_path: cerulean.path.Path, overwrite: str =
’never’, copy_into: bool = True, copy_permissions: bool = False, callback: Op-
tional[Callable[[int, int], None]] = None)→ None

Copy a file or directory from one path to another.

Note that source_path and target_path may be paths on different file systems.

The overwrite parameter decides what to do if a file is encountered on the target side that would be overwritten. If
overwrite equals ‘raise’, then a FileExistsError is raised. If overwrite equals ‘always’, then the file is overwritten
(removed and replaced if needed). If overwrite equals ‘never’, then the existing file is kept, and the source file
not copied.

If the target is a directory and copy_into is True (the default), the source will be copied into the target directory.
If an entry with the same name already exists within the target directory, then the overwrite parameter decides
what happens. If copy_into is False, the source will be copied on top of the directory, subject to the setting for
overwrite.

If copy_permissions is True, this function will make the target’s permissions match those of the source, including
SETUID, SETGID and sticky bits. If copy_permissions is False, the target’s permissions are left at their default
values (according to the umask, on Unix-like systems), less any permissions that the source file does not have.

If callback is provided, it should be a function taking two arguments, the current count of bytes copied and the
total number of bytes to be copied. It will be called once at the beginning of the copy operation (with count ==
0), once at the end (with count == total), and in between about once per second, if the copy takes long enough.
Note that the total number of bytes passed to the callback is approximate, and that the count may be larger than
the total if the estimate was off. To abort the copy, raise an exception from the callback function.

7

Cerulean Documentation, Release 0.3.8.dev

Parameters

• source_path – The path to the source file.

• target_path – A path to copy it to.

• overwrite – Selects behaviour when the target exists.

• copy_into – Whether to copy into target directories.

• copy_permissions – Whether to copy permissions along.

• callback – A callback function to call regularly with progress reports.

cerulean.logger = <Logger cerulean (WARNING)>
The Cerulean root logger. Use this to set Cerulean’s log level.

In particular, if something goes wrong and you want more debug output, you can do:

import logging

cerulean.logger.setLevel(logging.INFO)

or for even more:

cerulean.logger.setLevel(logging.DEBUG)

cerulean.make_file_system(protocol: str, location: Optional[str] = None, creden-
tial: Optional[cerulean.credential.Credential] = None) →
cerulean.file_system.FileSystem

Make a file system object.

This is a factory function for FileSystem objects. It will instantiate a FileSystem implementation according to
the parameters you give it.

FileSystems may hold resources, so you should either use this function with a with statement, or call close()
on the returned object when you are done with it.

Parameters

• protocol – The protocol to use to connect to the file system. Can be local, sftp or webdav.
For local, location and credential can be omitted. For webdav, credential can be omitted.

• location – The location in the form hostname, hostname:port or
http(s)://hostname:port/base_path to connect to.

• credential – The Credential to use to connect with.

Returns An instance of a FileSystem representing the described file system.

cerulean.make_terminal(protocol: str, location: Optional[str] = None, creden-
tial: Optional[cerulean.credential.Credential] = None) →
cerulean.terminal.Terminal

Make a terminal object.

This is a factory function for Terminal objects. It will instantiate a Terminal implementation according to the
parameters you give it.

Terminals may hold resources, so you should either use this function with a with statement, or call close()
on the returned object when you are done with it.

Parameters

• protocol – The protocol to use to connect to the file system. Can be local or sftp. For
local, location and credential can be omitted.

8 Chapter 2. API Reference

Cerulean Documentation, Release 0.3.8.dev

• location – The location in the form hostname or hostname:port to connect to.

• credential – The Credential to use to connect with.

Returns An instance of a FileSystem representing the described file system.

cerulean.make_scheduler(name: str, terminal: cerulean.terminal.Terminal, prefix: str = ”) →
cerulean.scheduler.Scheduler

Make a scheduler object.

This is a factory function for Scheduler objects. It will instantiate a Scheduler implementation according to the
parameters you give it, which talks to the supplied Terminal.

Parameters

• name – The name of the scheduler. One of directgnu, slurm, or torque.

• terminal – The terminal this Scheduler will communicate on.

• prefix – A string to prefix any shell commands with.

Returns The Scheduler.

class cerulean.Credential
Bases: abc.ABC

A credential for connecting to remote machines.

Credentials don’t have much in common other than a username, which is best modelled as a public attribute. So
this interface is empty, and only here to provide a generic type to represent any credential in the API.

username
The name of the user to connect as.

class cerulean.EntryType
Bases: enum.Enum

An enumeration.

BLOCK_DEVICE = 5

CHARACTER_DEVICE = 4

DIRECTORY = 1

FIFO = 6

FILE = 2

SOCKET = 7

SYMBOLIC_LINK = 3

class cerulean.PasswordCredential(username: str, password: str)
Bases: cerulean.credential.Credential

A credential comprising a username and password.

username
The name of the user to connect as

password
The password to authenticate with

class cerulean.Permission
Bases: enum.Enum

An enumeration.

2.1. cerulean package 9

Cerulean Documentation, Release 0.3.8.dev

GROUP_EXECUTE = 8

GROUP_READ = 32

GROUP_WRITE = 16

OTHERS_EXECUTE = 1

OTHERS_READ = 4

OTHERS_WRITE = 2

OWNER_EXECUTE = 64

OWNER_READ = 256

OWNER_WRITE = 128

SGID = 1024

STICKY = 512

SUID = 2048

class cerulean.PubKeyCredential(username: str, public_key: str, passphrase: str = None)
Bases: cerulean.credential.Credential

A credential using a public/private key pair.

username
The name of the user to connect as

public_key
The (local) path to a key file

passphrase
The passphrase to decrypt the key with; optional.

class cerulean.DirectGnuScheduler(terminal: cerulean.terminal.Terminal, prefix: str = ”)
Bases: cerulean.scheduler.Scheduler

A scheduler that runs processes directly on a GNU system.

This scheduler does not have a queue, instead it launches each job immediately as a process, and uses ps and
kill to manage it. This should work fine on any normal GNU/Linux system, but in some cases you may need an
extra command to make bash, ps and/or kill available (e.g. setting a PATH). If so, you can specify prefix, and
it will be prepended onto these commands. Note that this is a simple string concatenation, so you may need a
semicolon at the end depending your exact prefix command.

cancel(job_id: str)→ None
Cancel a running job.

Submits a cancellation request for a job to the scheduler.

Parameters job_id – Id of the job to be cancelled.

get_exit_code(job_id: str)→ Optional[int]
Get the exit code of a finished job.

Once a job is done, its exit code may be requested using this method. If the job is still running or failed to
start, then there is no exit code, and None will be returned.

Parameters job_id – A job id string obtained from submit().

Returns The exit code, or None if there is none.

10 Chapter 2. API Reference

Cerulean Documentation, Release 0.3.8.dev

get_status(job_id: str)→ cerulean.job_status.JobStatus
Look up the status of a job.

This method is used to check if a job is still in the queue, running, or done.

Parameters job_id – A job id string obtained from submit().

Returns The status of the job as a JobStatus

submit(job_description: cerulean.job_description.JobDescription)→ str
Submit a job for execution.

Parameters job_description – A description of the job to run.

Returns A job id that can be used to keep track of it.

class cerulean.FileSystem
Bases: abc.ABC

Represents a file system.

This is a generic interface class that all file systems inherit from, so you can use it wherever any file system will
do.

In order to do something useful, you’ll want an actual file system, like a LocalFileSystem or an
SftpFileSystem.

FileSystems may hold resources, so you should either use them with a with statement, or call close() on
the returned object when you are done with it.

Beyond that, file systems support a single operation:

fs / 'path'

which produces a Path, through which you can do things with files.

close()→ None
Close connections and free resources, if any.

FileSystem objects may hold resources that need to be freed when you are done with the object. You
can free them by calling this function, or you can use the FileSystem as a context manager using a with
statement.

root()→ cerulean.path.Path
Returns a Path representing the root of the file system.

class cerulean.JobDescription
Bases: object

Describes a job to submit to a scheduler.

name
The name of the job, with which it will show up in the scheduler’s queue. Cerulean does not use the name,
but it may be useful if you manually check the queue.

Type str

working_directory
The working directory to execute in.

Type str

environment
A dictionary of environment variables to define, and their values.

Type Dict[str, str]

2.1. cerulean package 11

Cerulean Documentation, Release 0.3.8.dev

command
The command to execute.

Type str

arguments
A list of arguments to pass. If needed, you need to add quotes yourself, the arguments will not be escaped
by cerulean.

Type list of str

stdout_file
File to direct standard output to.

Type str

stderr_file
File to direct standard error to.

Type str

queue_name
Name of the queue to submit to.

Type str

time_reserved
Time to reserve, in seconds.

Type int

num_nodes
The number of nodes to reserve.

Type int

mpi_processes_per_node
Number of MPI processes to start per node.

Type int

system_out_file
File to direct the standard output of the scheduler to.

Type str

system_err_file
File to direct the standard error of the scheduler to.

Type str

extra_scheduler_options
Additional options to add to the scheduler command line on job submission. Note that these are scheduler-
specific!

Type str

Note that stdout_file and stderr_file will receive the output of the process you are starting, while system_out_file and system_err_file will receive messages from the scheduler

Type e.g. that the job ran out of its time limit and was killed

class cerulean.JobStatus
Bases: enum.Enum

An enumeration.

DONE = 3

12 Chapter 2. API Reference

Cerulean Documentation, Release 0.3.8.dev

RUNNING = 2

WAITING = 1

class cerulean.LocalFileSystem
Bases: cerulean.file_system_impl.FileSystemImpl

Represents the local file system.

To create an instance, just call LocalFileSystem().

LocalFileSystem support a single operation:

fs / 'path'

which produces a Path, through which you can do things with local files.

LocalFileSystem is a context manager, so you can use it in a with statement, and it has a close() method,
but since it doesn’t hold any resources, you do not need to use them. It may be good to do so anyway, to avoid
leaks if you ever replace it with a different FileSystem that does.

root()→ cerulean.path.Path
Returns a Path representing the root of the file system.

class cerulean.LocalTerminal
Bases: cerulean.terminal.Terminal

A Terminal for running commands on the local machine.

To create one, just do term = LocalTerminal().

run(timeout: float, command: str, args: List[str], stdin_data: str = None, workdir: str = None) →
Tuple[Optional[int], str, str]
Run a shell command.

The command will be run in the default shell, and arguments are not quoted automatically. If you have
untrusted or unknown input, be sure to quote it using quote() from the shlex module of the Python standard
library.

Parameters

• timeout – How long to wait for the result(s)

• command – The command to run.

• args – A list of arguments to pass

• stdin_data – Data to pass to standard input

• workdir – Working directory to execute in

Returns A tuple containing the exit code, standard output, and standard error output.

class cerulean.Path(filesystem: FileSystemImpl, path: Union[pathlib.Path, pathlib.PurePosixPath,
pathlib.PureWindowsPath])

Bases: object

A path on a file system.

This class implements the pathlib.PurePosixPath interface fully, and a pathlib.PosixPath-like interface, although
it has some omissions, additions, and improvements to make it more compatible with remote and non-standard
file systems.

To make a Path, create a FileSystem first, then use the / operator on it, e.g. fs / ‘home’ / ‘user’. Do not construct
objects of this class directly.

2.1. cerulean package 13

Cerulean Documentation, Release 0.3.8.dev

Paths can be compared for (non-)equality using == and !=. Paths that compare unequal could still refer to the
same file, if it is accessible in multiple ways. For instance, a local path /tmp would compare unequal to a path
/tmp on an SftpFileSystem, even if the SftpFileSystem is connected to localhost, and the paths do in fact refer
to the same directory.

filesystem
The file system that this path is on.

anchor
The concatenation of the drive and the root.

as_posix()→ str
Returns the path as a string with forward slashes.

as_uri()→ str
Returns a URI representing the path.

This is not yet implemented, please file an issue if you need it.

chmod(mode: int)→ None
Sets permissions.

Parameters mode – The numerical mode describing the permissions to set. This uses standard
POSIX mode definitions, see man chmod.

drive
The drive letter (including the colon), if any.

entry_type()→ cerulean.path.EntryType
Returns the kind of directory entry type the path points to.

Returns An EntryType enum value describing the filesystem entry.

Raises FileNotFoundError – If there is no file here.

exists()→ bool
Returns true iff a filesystem object exists at this path.

If the path denotes a symlink, returns whether the symlink points to an existing filesystem object, recur-
sively. If the symlink is part of a link loop, returns False.

Returns True iff the path exists on the filesystem.

gid()→ Optional[int]
Returns the group id associated with the object.

Returns An integer with the id, or None of not supported.

has_permission(permission: cerulean.path.Permission)→ bool
Checks permissions.

Parameters permission – A particular file permission, see Permission

Returns True iff the object exists and has the given permission.

is_absolute()→ bool
Returns whether the path is absolute.

is_dir()→ bool
Returns whether the path is a directory.

Returns True iff the path exists and is a directory, or a symbolic link pointing to a directory.

is_file()→ bool
Returns whether the path is a file.

14 Chapter 2. API Reference

Cerulean Documentation, Release 0.3.8.dev

Returns True iff the path exists and is a file, or a symbolic link pointing to a file.

is_reserved()→ bool
Return whether the path is reserved.

This can only happen on Windows on a LocalFileSystem.

is_symlink()→ bool
Returns whether the path is a symlink.

Returns True iff the path exists and is a symbolic link.

iterdir()→ Generator[cerulean.path.Path, None, None]
Iterates through a directory’s contents.

Yields Paths of entries in the directory.

joinpath(*other)→ cerulean.path.Path
Joins another path or string onto the back of this one.

Parameters other – The other path to append to this one.

Returns The combined path.

mkdir(mode: Optional[int] = None, parents: bool = False, exists_ok: bool = False)→ None
Makes a directory with the given access rights.

If mode is not set or None, assigns permissions according to the current umask. If parents is True, makes
parent directories as needed. If exists_ok is True, silently ignores if the directory already exists.

Parameters

• mode – A numerical Posix access permissions mode.

• parents – Whether to make parent directories.

• exists_ok – Don’t raise if target already exists.

name
The name of the file or directory.

This excludes parents but includes the suffix.

parent
The logical parent of the path.

parents
A sequence containing the logical ancestors of the path.

parts
A tuple containing the path’s components.

read_bytes()→ bytes
Reads file contents as a bytes object.

Returns The contents of the file.

read_text(encoding: str = ’utf-8’)→ str
Reads file contents as a string.

Assumes UTF-8 encoding.

Parameters encoding – The encoding to assume.

Returns The contents of the file.

2.1. cerulean package 15

Cerulean Documentation, Release 0.3.8.dev

readlink(recursive: bool = False)→ cerulean.path.Path
Reads the target of a symbolic link.

Note that the result may be a relative path, which should then be taken relative to the directory containing
the link.

If recursive is True, this function will follow a chain of symlinks until it reaches something that is not a
symlink, or until the maximum recursion depth is reached and a RunTimeError is raised.

Parameters recursive – Whether to resolve recursively.

Returns The path that the symlink points to.

Raises RunTimeError – The recursion depth was reached, probably as a result of a link loop.

relative_to(*other)→ cerulean.path.Path
Returns a version of this path relative to another path.

Both paths must be on the same file system.

Parameters other – The path to use as a reference.

remove()→ None
Removes a file, link, device or directory.

Directories are removed recursively, links, devices and files are deleted. Link targets are left in place.
Returns without error if there is nothing there already.

Use this method to ensure that there is no entry at this path.

rename(target: cerulean.path.Path)→ None
Renames a file.

The new path must be in the same filesystem. If the new path exists, then it will be overwritten.

Parameters target – The new path of the file.

rmdir(recursive: bool = False)→ None
Removes a directory.

If recursive is True, remove all files and directories inside as well. If recursive is False, the directory must
be empty.

root
A string representing the root of the filesystem.

set_permission(permission: cerulean.path.Permission, value: bool = True)→ None
Sets permissions.

Parameters

• permission – The permission to set.

• value – Whether to enable or disable the permission.

size()→ int
Returns the size of the file.

Returns An integer with the number of bytes in the file.

stem
The stem of this path.

This is the name of the file or directory, excluding parents and excluding the suffix.

16 Chapter 2. API Reference

Cerulean Documentation, Release 0.3.8.dev

streaming_read()→ Generator[bytes, None, None]
Streams data from a file.

This is a generator function that generates bytes objects containing consecutive chunks of the file.

streaming_write(data: Iterable[bytes])→ None
Streams data to a file.

Creates a new file (overwriting any existing file) at the current path, and writes data to it from the given
iterable.

Parameters data – An iterable of bytes containing data to be written.

suffix
The file extension of the file or directory, if any.

suffixes
A list of all the extensions in the file name.

symlink_to(target: cerulean.path.Path)→ None
Makes a symlink from the current path to the target.

If this raises an OSError with the message Failed, then the problem may be that the target does not exist.

Parameters target – The path to symlink to.

Raises FileExistsError – if you try to overwrite an existing entry with a symlink.

touch()→ None
Updates the access and modification times of file.

If the file does not exist, it will be created, which is often what this function is used for.

uid()→ Optional[int]
Returns the user id of the owner of the object.

Returns An integer with the id, or None if not supported.

unlink()→ None
Removes a file or device node.

For removing directories, see rmdir().

walk(topdown: bool = True, onerror: Optional[Callable[[OSError], None]] = None, followlinks: bool
= False)→ Generator[Tuple[cerulean.path.Path, List[str], List[str]], None, None]

Walks a directory hierarchy recursively.

This is a version of Python’s os.walk() function adapted to be a little bit more pathlib-like. It walks
the directory and its subdirectories, yielding a tuple (dirpath, dirnames, filenames) for each directory.
These are the path of the directory, as a Path, a list of strings containing the names of the subdirectories
inside this directory, and a list of strings containing the names of the non-directories in this directory
respectively.

If topdown is True, the triple for a directory will be produced before the triples of its subdirectories; if it
is False, it will be produced after (pre- and post-order traversal respectively).

If onerror is set, the function it is set to will be called if an error occurs, and passed an instance of
OSError. The callback can handle the error in some way, or raise it to end the traversal. The OSError
object will have an attribute filename containing the name of the file that triggered the problem as a
string.

If followlinks is True, this function will recurse into symlinks that point to directories, if it is False, it
will silently skip them.

Yields Tuples (dirpath, dirnames, filenames), as above.

2.1. cerulean package 17

Cerulean Documentation, Release 0.3.8.dev

with_name(name: str)→ cerulean.path.Path
Return a new path with the last component set to name.

Parameters name – The new name to use.

with_suffix(suffix: str)→ cerulean.path.Path
Return a new path with the suffix set to suffix

Parameters suffix – The new suffix to use.

write_bytes(data: bytes)→ None
Writes bytes to the file.

Overwrites the file if it exists.

Parameters data – The data to be written.

write_text(text: str, encoding: str = ’utf-8’)→ None
Writes text to a file.

Overwrites the file if it exists.

Parameters

• text – The text to be written.

• encoding – The encoding to use.

class cerulean.Scheduler
Bases: abc.ABC

Interface for job schedulers.

To run jobs using a scheduler, you will want to use SlurmScheduler or TorqueScheduler.

cancel(job_id: str)→ None
Cancel a running job.

Submits a cancellation request for a job to the scheduler.

Parameters job_id – Id of the job to be cancelled.

get_exit_code(job_id: str)→ Optional[int]
Get the exit code of a finished job.

Once a job is done, its exit code may be requested using this method. If the job is still running or failed to
start, then there is no exit code, and None will be returned.

Parameters job_id – A job id string obtained from submit().

Returns The exit code, or None if there is none.

get_status(job_id: str)→ cerulean.job_status.JobStatus
Look up the status of a job.

This method is used to check if a job is still in the queue, running, or done.

Parameters job_id – A job id string obtained from submit().

Returns The status of the job as a JobStatus

submit(job_description: cerulean.job_description.JobDescription)→ str
Submit a job for execution.

Parameters job_description – A description of the job to run.

Returns A job id that can be used to keep track of it.

18 Chapter 2. API Reference

Cerulean Documentation, Release 0.3.8.dev

wait(job_id: str, time_out: float = -1.0, interval: float = None)→ Optional[int]
Wait until the job is done.

Will wait approximately time_out seconds for the job to finish. Returns the exit code if the job finished,
otherwise None.

The state of the job will be checked every interval seconds. If interval is None, or not specified, then the
interval will be 1s, or time_out / 50, whichever is larger. If time_out is not given, the interval will start at
1s, then increase gradually to about 30s.

Parameters

• job_id – The job to wait for.

• time_out – Time to wait in seconds. If negative, wait forever.

• interval – Time to wait between checks. See above.

Returns The exit code of the job.

class cerulean.SftpFileSystem(terminal: cerulean.ssh_terminal.SshTerminal, own_term: bool =
False)

Bases: cerulean.file_system_impl.FileSystemImpl

A FileSystem implementation that connects to an SFTP server.

SftpFileSystem supports the / operation:

fs / 'path'

which produces a Path, through which you can do things with the remote files.

It is also a context manager, so that you can (and should!) use it with a with statement, which will ensure
that the connection is closed when you are done with the it. Alternatively, you can call close() to close the
connection.

If own_term is True, this class assumes that it owns the terminal you gave it, and that it is responsible for closing
it when it’s done with it. If you share an SshTerminal between an SftpFileSystem and a scheduler, or use the
terminal directly yourself, then you want to use False here, and close the terminal yourself when you don’t need
it any more.

Parameters

• terminal – The terminal to connect through.

• own_term – Whether to close the terminal when the file system is closed.

close()→ None
Close connections and free resources, if any.

FileSystem objects may hold resources that need to be freed when you are done with the object. You
can free them by calling this function, or you can use the FileSystem as a context manager using a with
statement.

root()→ cerulean.path.Path
Returns a Path representing the root of the file system.

class cerulean.SlurmScheduler(terminal: cerulean.terminal.Terminal, prefix: str = ”)
Bases: cerulean.scheduler.Scheduler

Represents a Slurm scheduler.

This class represents a Slurm scheduler, to which it talks through a Terminal.

2.1. cerulean package 19

Cerulean Documentation, Release 0.3.8.dev

On some machines, an additional command is needed to make Slurm available to the user, e.g. ‘module load
slurm’. If you specify a prefix, it will be prepended to any Slurm command run by this class. Note that this is
a plain string concatenation, so you’ll probably need something like ‘module load slurm;’, with a semicolon to
separate the commands.

cancel(job_id: str)→ None
Cancel a running job.

Submits a cancellation request for a job to the scheduler.

Parameters job_id – Id of the job to be cancelled.

get_exit_code(job_id: str)→ Optional[int]
Get the exit code of a finished job.

Once a job is done, its exit code may be requested using this method. If the job is still running or failed to
start, then there is no exit code, and None will be returned.

Parameters job_id – A job id string obtained from submit().

Returns The exit code, or None if there is none.

get_status(job_id: str)→ cerulean.job_status.JobStatus
Look up the status of a job.

This method is used to check if a job is still in the queue, running, or done.

Parameters job_id – A job id string obtained from submit().

Returns The status of the job as a JobStatus

submit(job_description: cerulean.job_description.JobDescription)→ str
Submit a job for execution.

Parameters job_description – A description of the job to run.

Returns A job id that can be used to keep track of it.

class cerulean.SshTerminal(host: str, port: int, credential: cerulean.credential.Credential)
Bases: cerulean.terminal.Terminal

A terminal that runs commands over SSH.

This terminal connects to a host using SSH, then lets you run commands there.

Parameters

• host – The hostname to connect to.

• port – The port to connect on.

• credential – The credential to authenticate with.

close()→ None
Close the terminal.

This closes any connections and frees resources associated with the terminal.

run(timeout: float, command: str, args: List[str], stdin_data: str = None, workdir: str = None) →
Tuple[Optional[int], str, str]
Run a shell command.

The command will be run in the default shell, and arguments are not quoted automatically. If you have
untrusted or unknown input, be sure to quote it using quote() from the shlex module of the Python standard
library.

Parameters

20 Chapter 2. API Reference

Cerulean Documentation, Release 0.3.8.dev

• timeout – How long to wait for the result(s)

• command – The command to run.

• args – A list of arguments to pass

• stdin_data – Data to pass to standard input

• workdir – Working directory to execute in

Returns A tuple containing the exit code, standard output, and standard error output.

class cerulean.Terminal
Bases: abc.ABC

Interface for Terminals.

This is a generic interface class that all terminals inherit from, so you can use it wherever any terminal will do.

In order to do something useful, you’ll want an actual terminal, like a LocalTerminal or an SshTerminal.

Terminals may hold resources, so you should either use them with a with statement, or call close() on them
when you are done with them.

close()→ None
Close the terminal.

This closes any connections and frees resources associated with the terminal. LocalTerminal does not
require this, but terminals that connect to remote machines do. You may want to always either close a
Terminal, or use it as a context manager, to avoid problems if you ever change from a local terminal to a
remote one.

run(timeout: float, command: str, args: List[str], stdin_data: str = None, workdir: str = None) →
Tuple[Optional[int], str, str]
Run a shell command.

The command will be run in the default shell, and arguments are not quoted automatically. If you have
untrusted or unknown input, be sure to quote it using quote() from the shlex module of the Python standard
library.

Parameters

• timeout – How long to wait for the result(s)

• command – The command to run.

• args – A list of arguments to pass

• stdin_data – Data to pass to standard input

• workdir – Working directory to execute in

Returns A tuple containing the exit code, standard output, and standard error output.

class cerulean.TorqueScheduler(terminal: cerulean.terminal.Terminal, prefix: str = ”)
Bases: cerulean.scheduler.Scheduler

Represents a Torque scheduler.

This class represents a Torque scheduler, to which it talks through a Terminal.

On some machines, an additional command is needed to make Torque available to the user, e.g. ‘module load
torque’. If you specify a prefix, it will be prepended to any Torque command run by this class. Note that this is
a plain string concatenation, so you’ll probably need something like ‘module load torque;’, with a semicolon to
separate the commands.

Parameters

2.1. cerulean package 21

Cerulean Documentation, Release 0.3.8.dev

• terminal – The terminal to use to talk to the scheduler.

• prefix – A string to prefix the Torque commands with.

cancel(job_id: str)→ None
Cancel a running job.

Submits a cancellation request for a job to the scheduler.

Parameters job_id – Id of the job to be cancelled.

get_exit_code(job_id: str)→ Optional[int]
Get the exit code of a finished job.

Once a job is done, its exit code may be requested using this method. If the job is still running or failed to
start, then there is no exit code, and None will be returned.

Parameters job_id – A job id string obtained from submit().

Returns The exit code, or None if there is none.

get_status(job_id: str)→ cerulean.job_status.JobStatus
Look up the status of a job.

This method is used to check if a job is still in the queue, running, or done.

Parameters job_id – A job id string obtained from submit().

Returns The status of the job as a JobStatus

submit(job_description: cerulean.job_description.JobDescription)→ str
Submit a job for execution.

Parameters job_description – A description of the job to run.

Returns A job id that can be used to keep track of it.

exception cerulean.UnsupportedOperationError
Bases: RuntimeError

Raised when an unsupported method is called.

See WebdavFileSystem.

class cerulean.WebdavFileSystem(url: str, credential: Optional[cerulean.credential.Credential]
= None, host_ca_cert_file: Optional[str] = None, unsup-
ported_methods_raise: Optional[bool] = True)

Bases: cerulean.file_system_impl.FileSystemImpl

A FileSystem implementation that connects to a WebDAV server.

WebdavFileSystem supports the / operation:

fs / 'path'

which produces a Path, through which you can do things with the remote files.

It is also a context manager, so that you can (and should!) use it with a with statement, which will ensure
that the connection is closed when you are done with the it. Alternatively, you can call close() to close the
connection.

The WebDAV protocol does not support all operations specified by the Cerulean API. In particular, symbolic
links are not supported, nor are ownership and permissions. Read-access to these properties is emulated, e.g.
is_symlink() simply always returns false, all files and directories are owned by uid 0 and gid 0, with access
permissions determined by whether the server will let us access them.

22 Chapter 2. API Reference

Cerulean Documentation, Release 0.3.8.dev

By default, if you try to run any of the related modifying methods, e.g. symlink_to() or set_permissions(),
an UnsupportedOperationError will be raised. If you set unsupported_methods_raise to False when
creating a WebdavFileSystem, then these methods will simply return without doing anything.

WebdavFileSystem supports both HTTP and HTTPS, but not (yet) client-side certificates.

Parameters

• url – The server base location, e.g. http://example.com/webdav

• credential – The credential to use to connect.

• host_ca_cert_file – Path to a certificate file to use for authentication. Useful for
servers that use a self-signed certificate.

• unsupported_methods_raise – Raise on using an unsupported method, see above.

close()→ None
Close connections and free resources, if any.

FileSystem objects may hold resources that need to be freed when you are done with the object. You
can free them by calling this function, or you can use the FileSystem as a context manager using a with
statement.

root()→ cerulean.path.Path
Returns a Path representing the root of the file system.

2.1. cerulean package 23

http://example.com/webdav

Cerulean Documentation, Release 0.3.8.dev

24 Chapter 2. API Reference

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

25

Cerulean Documentation, Release 0.3.8.dev

26 Chapter 3. Indices and tables

Python Module Index

c
cerulean, 7

27

Cerulean Documentation, Release 0.3.8.dev

28 Python Module Index

Index

A
anchor (cerulean.Path attribute), 14
arguments (cerulean.JobDescription attribute), 12
as_posix() (cerulean.Path method), 14
as_uri() (cerulean.Path method), 14

B
BLOCK_DEVICE (cerulean.EntryType attribute), 9

C
cancel() (cerulean.DirectGnuScheduler method), 10
cancel() (cerulean.Scheduler method), 18
cancel() (cerulean.SlurmScheduler method), 20
cancel() (cerulean.TorqueScheduler method), 22
cerulean (module), 7
CHARACTER_DEVICE (cerulean.EntryType attribute), 9
chmod() (cerulean.Path method), 14
close() (cerulean.FileSystem method), 11
close() (cerulean.SftpFileSystem method), 19
close() (cerulean.SshTerminal method), 20
close() (cerulean.Terminal method), 21
close() (cerulean.WebdavFileSystem method), 23
command (cerulean.JobDescription attribute), 12
copy() (in module cerulean), 7
Credential (class in cerulean), 9

D
DirectGnuScheduler (class in cerulean), 10
DIRECTORY (cerulean.EntryType attribute), 9
DONE (cerulean.JobStatus attribute), 12
drive (cerulean.Path attribute), 14

E
entry_type() (cerulean.Path method), 14
EntryType (class in cerulean), 9
environment (cerulean.JobDescription attribute), 11
exists() (cerulean.Path method), 14
extra_scheduler_options

(cerulean.JobDescription attribute), 12

F
FIFO (cerulean.EntryType attribute), 9
FILE (cerulean.EntryType attribute), 9
filesystem (cerulean.Path attribute), 14
FileSystem (class in cerulean), 11

G
get_exit_code() (cerulean.DirectGnuScheduler

method), 10
get_exit_code() (cerulean.Scheduler method), 18
get_exit_code() (cerulean.SlurmScheduler

method), 20
get_exit_code() (cerulean.TorqueScheduler

method), 22
get_status() (cerulean.DirectGnuScheduler

method), 10
get_status() (cerulean.Scheduler method), 18
get_status() (cerulean.SlurmScheduler method), 20
get_status() (cerulean.TorqueScheduler method),

22
gid() (cerulean.Path method), 14
GROUP_EXECUTE (cerulean.Permission attribute), 9
GROUP_READ (cerulean.Permission attribute), 10
GROUP_WRITE (cerulean.Permission attribute), 10

H
has_permission() (cerulean.Path method), 14

I
is_absolute() (cerulean.Path method), 14
is_dir() (cerulean.Path method), 14
is_file() (cerulean.Path method), 14
is_reserved() (cerulean.Path method), 15
is_symlink() (cerulean.Path method), 15
iterdir() (cerulean.Path method), 15

J
JobDescription (class in cerulean), 11
JobStatus (class in cerulean), 12

29

Cerulean Documentation, Release 0.3.8.dev

joinpath() (cerulean.Path method), 15

L
LocalFileSystem (class in cerulean), 13
LocalTerminal (class in cerulean), 13
logger (in module cerulean), 8

M
make_file_system() (in module cerulean), 8
make_scheduler() (in module cerulean), 9
make_terminal() (in module cerulean), 8
mkdir() (cerulean.Path method), 15
mpi_processes_per_node

(cerulean.JobDescription attribute), 12

N
name (cerulean.JobDescription attribute), 11
name (cerulean.Path attribute), 15
num_nodes (cerulean.JobDescription attribute), 12

O
OTHERS_EXECUTE (cerulean.Permission attribute), 10
OTHERS_READ (cerulean.Permission attribute), 10
OTHERS_WRITE (cerulean.Permission attribute), 10
OWNER_EXECUTE (cerulean.Permission attribute), 10
OWNER_READ (cerulean.Permission attribute), 10
OWNER_WRITE (cerulean.Permission attribute), 10

P
parent (cerulean.Path attribute), 15
parents (cerulean.Path attribute), 15
parts (cerulean.Path attribute), 15
passphrase (cerulean.PubKeyCredential attribute),

10
password (cerulean.PasswordCredential attribute), 9
PasswordCredential (class in cerulean), 9
Path (class in cerulean), 13
Permission (class in cerulean), 9
PubKeyCredential (class in cerulean), 10
public_key (cerulean.PubKeyCredential attribute),

10

Q
queue_name (cerulean.JobDescription attribute), 12

R
read_bytes() (cerulean.Path method), 15
read_text() (cerulean.Path method), 15
readlink() (cerulean.Path method), 15
relative_to() (cerulean.Path method), 16
remove() (cerulean.Path method), 16
rename() (cerulean.Path method), 16
rmdir() (cerulean.Path method), 16

root (cerulean.Path attribute), 16
root() (cerulean.FileSystem method), 11
root() (cerulean.LocalFileSystem method), 13
root() (cerulean.SftpFileSystem method), 19
root() (cerulean.WebdavFileSystem method), 23
run() (cerulean.LocalTerminal method), 13
run() (cerulean.SshTerminal method), 20
run() (cerulean.Terminal method), 21
RUNNING (cerulean.JobStatus attribute), 12

S
Scheduler (class in cerulean), 18
set_permission() (cerulean.Path method), 16
SftpFileSystem (class in cerulean), 19
SGID (cerulean.Permission attribute), 10
size() (cerulean.Path method), 16
SlurmScheduler (class in cerulean), 19
SOCKET (cerulean.EntryType attribute), 9
SshTerminal (class in cerulean), 20
stderr_file (cerulean.JobDescription attribute), 12
stdout_file (cerulean.JobDescription attribute), 12
stem (cerulean.Path attribute), 16
STICKY (cerulean.Permission attribute), 10
streaming_read() (cerulean.Path method), 16
streaming_write() (cerulean.Path method), 17
submit() (cerulean.DirectGnuScheduler method), 11
submit() (cerulean.Scheduler method), 18
submit() (cerulean.SlurmScheduler method), 20
submit() (cerulean.TorqueScheduler method), 22
suffix (cerulean.Path attribute), 17
suffixes (cerulean.Path attribute), 17
SUID (cerulean.Permission attribute), 10
SYMBOLIC_LINK (cerulean.EntryType attribute), 9
symlink_to() (cerulean.Path method), 17
system_err_file (cerulean.JobDescription at-

tribute), 12
system_out_file (cerulean.JobDescription at-

tribute), 12

T
Terminal (class in cerulean), 21
time_reserved (cerulean.JobDescription attribute),

12
TorqueScheduler (class in cerulean), 21
touch() (cerulean.Path method), 17

U
uid() (cerulean.Path method), 17
unlink() (cerulean.Path method), 17
UnsupportedOperationError, 22
username (cerulean.Credential attribute), 9
username (cerulean.PasswordCredential attribute), 9
username (cerulean.PubKeyCredential attribute), 10

30 Index

Cerulean Documentation, Release 0.3.8.dev

W
wait() (cerulean.Scheduler method), 18
WAITING (cerulean.JobStatus attribute), 13
walk() (cerulean.Path method), 17
WebdavFileSystem (class in cerulean), 22
with_name() (cerulean.Path method), 17
with_suffix() (cerulean.Path method), 18
working_directory (cerulean.JobDescription at-

tribute), 11
write_bytes() (cerulean.Path method), 18
write_text() (cerulean.Path method), 18

Index 31

	Tutorial
	Accessing files
	Running commands
	Submitting jobs
	More information

	API Reference
	cerulean package

	Indices and tables
	Python Module Index
	Index

