

Welcome to Cerulean’s documentation!

Cerulean is a Python 3 library for connecting to HPC compute resources, such as
compute clusters and supercomputers. It lets you copy files between local and
SFTP filesystems using a pathlib-like API, it lets you start processes
locally and remotely via SSH, and it lets you submit jobs to schedulers such as
Slurm and Torque/PBS.

Cerulean supports Python 3.4 and later.

Contents:

	Tutorial
	Accessing files

	Running commands

	Submitting jobs

	More information

API Reference

	 API reference

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

Welcome to the Cerulean tutorial. This tutorial demonstrates the basics of using
Cerulean: using local and remote file systems, running processes locally and
remotely, and using schedulers.

To install Cerulean, use

pip install cerulean

If you’re using Cerulean in a program, you will probably want to use a
virtualenv and install Cerulean into that, together with your other
dependencies.

Accessing files

The file access functions of Cerulean use a pathlib-like API, but unlike in
pathlib, Cerulean supports remote file systems. That means that there is no
longer just the local file system, but multiple file systems, and that Path
objects have a particular file system that they are on.

Of course, Cerulean also supports the local file system. To make an object
representing the local file system, you use this:

import cerulean

fs = cerulean.LocalFileSystem()

And then you can make a path on the file system using:

import cerulean

fs = cerulean.LocalFileSystem()
my_home_dir = fs / 'home' / 'username'

In this example, my_home_dir will be a cerulean.Path object,
which is very similar to a normal Python pathlib.PosixPath. For example, you
can read the contents of a file through it:

import cerulean

fs = cerulean.LocalFileSystem()
passwd_file = fs / 'etc' / 'passwd'

users = passwd_file.read_text()
print(users)

Note that cerulean.Path does not support open(). Cerulean can copy
files and stream data from and to them, but it does not offer random access, as
not all remote file access protocols support this.

You can use the / operator to build paths from components as with
pathlib, and there’s a wide variety of supported operations. See the API
documentation for cerulean.Path for details.

Remote filesystems

Cerulean supports remote file systems through the SFTP protocol. (It uses the
Paramiko library internally for this.) Accessing a remote file system through
SFTP goes like this:

import cerulean

credential = cerulean.PasswordCredential('username', 'password')
with cerulean.SshTerminal('remotehost.example.com', 22, credential) as term
 with SftpFileSystem(term) as fs:
 my_home_dir = fs / 'home' / 'username'
 test_txt = (my_home_dir / 'test.txt').read_text()
 print(test_txt)

Since we are going to connect to a remote system, we need a credential.
Cerulean has two types of credentials, PasswordCredential and
PubKeyCredential. They are what you expect, one holds a username and
a password, the other a username, a local path to a public key file, and
optionally a passphrase for the key.

Once we have a credential, we can open a terminal. Like a terminal window on
your desktop, a Terminal object lets you run commands. Cerulean
supports local terminals and remote terminals through SSH. Since the SFTP
protocol is an extension to the SSH protocol, we need an SSH terminal connection
first, so we make one, connecting to a host, on a port, with our credential.
This terminal holds an SSH connection, which needs to be closed when we are done
with it. SshTerminal is therefore a context manager and needs to be
used in a with statement. Note that LocalTerminal is not a context
manager, as it does not hold any resources.

Once we have the terminal, we can make an SftpFileSystem object, and
from there it works just like a local file system. Just like
SshTerminal, SftpFileSystem is a context manager, so we need
another with-statement.

Copying files

When running jobs on HPC machines, you often start with copying the input files
from the local system to the HPC machine, and finish with copying the results
back. Cerulean’s copy() function takes care of this for you, and works as
you would expect:

import cerulean

local_fs = cerulean.LocalFileSystem()

credential = cerulean.PasswordCredential('username', 'password')
with cerulean.SshTerminal('remotehost.example.com', 22, credential) as term
 with SftpFileSystem(term) as remote_fs:
 input_file = local_fs / 'home' / 'username' / 'input.txt'
 job_dir = remote_fs / 'home' / 'username' / 'my_job'
 cerulean.copy(input_file, job_dir)

 # run job and wait for it to finish

 output_file = local_fs / 'home' / 'username' / 'output.txt'
 cerulean.copy(job_dir / 'output.txt', output_file)

Running commands

If you have read the above, then the secret is already out: running commands
using Cerulean is done using a Terminal. For example, you can run a
command locally using:

import cerulean

term = cerulean.LocalTerminal()

exit_code, stdout_text, stderr_text = term.run(
 10.0, 'ls', ['-l'], None, '/home/username')

The first argument to Terminal.run() is a timeout value in seconds,
which determines how long Cerulean will wait for the command to finish. The
second argument is the command to run, followed by a list of arguments. Next is
an optional string that, if you specify it, will be fed into the standard input
of the program you are starting. The final argument is a string specifying the
working directory in which to execute the command.

The function returns a tuple containing three values: the exit code of the
process (or None if it didn’t finish in time), a string containing text
printed to standard output, and a string containing text printed to standard
error by the command you ran.

Running commands remotely through SSH of course works in exactly the same way,
except you use an SshTerminal, as above:

import cerulean

credential = cerulean.PasswordCredential('username', 'password')
with cerulean.SshTerminal('remotehost.example.com', 22, credential) as term
 exit_code, stdout_text, stderr_text = term.run(
 10.0, 'ls', ['-l'], None, '/home/username')

Submitting jobs

On High Performance Computing machines, you don’t run commands directly.
Instead, you submit batch jobs to a scheduler, which will place them in a queue,
and run them when everyone else in line before you is done. The most popular
scheduler at the moment seems to be Slurm, but Cerulean also supports
Torque/PBS.

The usual way of working with a scheduler is to use ssh to connect to the
cluster, where you run commands that submit jobs and check on their status.
Cerulean works in the same way:

import cerulean
import time

credential = cerulean.PasswordCredential('username', 'password')
with cerulean.SshTerminal('remotehost.example.com', 22, credential) as term
 sched = cerulean.SlurmScheduler(term)

 job = cerulean.JobDescription()
 job.name = 'cerulean_test'
 job.command = 'ls'
 job.arguments = ['-l']

 job_id = sched.submit_job(job)

 time.sleep(5)
 status = sched.get_status(job_id)

 if status == cerulean.JobStatus.DONE:
 exit_code = sched.get_exit_code()
 print('Job exited with code {}'.format(exit_code))

Of course, if you intend to run your submission script on the head node, then
the scheduler is local, and you want to use a LocalTerminal with your
SlurmScheduler. If your HPC machine runs Torque/PBS, use a
TorqueScheduler instead.

More information

To find all the details of what Cerulean can do and how to do it, please refer
to the API documentation.

cerulean package

The cerulean module is the main API for Cerulean.

This module contains all the functions you need to use Cerulean.

Below, you will also find documentation for submodules. That is developer documentation, you do not need it to use Cerulean.

	
cerulean.copy(source_path: cerulean.path.Path, target_path: cerulean.path.Path, overwrite: str = 'never', copy_into: bool = True, copy_permissions: bool = False, callback: Optional[Callable[[int, int], None]] = None) → None

	Copy a file or directory from one path to another.

Note that source_path and target_path may be paths on different file systems.

The overwrite parameter decides what to do if a file is encountered on the target side that would be overwritten. If overwrite equals ‘raise’, then a FileExistsError is raised. If overwrite equals ‘always’, then the file is overwritten (removed and replaced if needed). If overwrite equals ‘never’, then the existing file is kept, and the source file not copied.

If the target is a directory and copy_into is True (the default), the source will be copied into the target directory. If an entry with the same name already exists within the target directory, then the overwrite parameter decides what happens. If copy_into is False, the source will be copied on top of the directory, subject to the setting for overwrite.

If copy_permissions is True, this function will make the target’s permissions match those of the source, including SETUID, SETGID and sticky bits. If copy_permissions is False, the target’s permissions are left at their default values (according to the umask, on Unix-like systems), less any permissions that the source file does not have.

If callback is provided, it should be a function taking two arguments, the current count of bytes copied and the total number of bytes to be copied. It will be called once at the beginning of the copy operation (with count == 0), once at the end (with count == total), and in between about once per second, if the copy takes long enough. Note that the total number of bytes passed to the callback is approximate, and that the count may be larger than the total if the estimate was off. To abort the copy, raise an exception from the callback function.

	Parameters

	
	source_path – The path to the source file.

	target_path – A path to copy it to.

	overwrite – Selects behaviour when the target exists.

	copy_into – Whether to copy into target directories.

	copy_permissions – Whether to copy permissions along.

	callback – A callback function to call regularly with progress reports.

	
cerulean.logger = <Logger cerulean (WARNING)>

	The Cerulean root logger. Use this to set Cerulean’s log level.

In particular, if something goes wrong and you want more debug output, you can do:

import logging

cerulean.logger.setLevel(logging.INFO)

or for even more:

cerulean.logger.setLevel(logging.DEBUG)

	
cerulean.make_file_system(protocol: str, location: Optional[str] = None, credential: Optional[cerulean.credential.Credential] = None) → cerulean.file_system.FileSystem

	Make a file system object.

This is a factory function for FileSystem objects. It will instantiate a FileSystem implementation according to the parameters you give it.

FileSystems may hold resources, so you should either use this function with a with statement, or call close() on the returned object when you are done with it.

	Parameters

	
	protocol – The protocol to use to connect to the file system. Can be local, sftp or webdav. For local, location and credential can be omitted. For webdav, credential can be omitted.

	location – The location in the form hostname, hostname:port or http(s)://hostname:port/base_path to connect to.

	credential – The Credential to use to connect with.

	Returns

	An instance of a FileSystem representing the described file system.

	
cerulean.make_terminal(protocol: str, location: Optional[str] = None, credential: Optional[cerulean.credential.Credential] = None) → cerulean.terminal.Terminal

	Make a terminal object.

This is a factory function for Terminal objects. It will instantiate a Terminal implementation according to the parameters you give it.

Terminals may hold resources, so you should either use this function with a with statement, or call close() on the returned object when you are done with it.

	Parameters

	
	protocol – The protocol to use to connect to the file system. Can be local or sftp. For local, location and credential can be omitted.

	location – The location in the form hostname or hostname:port to connect to.

	credential – The Credential to use to connect with.

	Returns

	An instance of a FileSystem representing the described file system.

	
cerulean.make_scheduler(name: str, terminal: cerulean.terminal.Terminal, prefix: str = '') → cerulean.scheduler.Scheduler

	Make a scheduler object.

This is a factory function for Scheduler objects. It will instantiate a Scheduler implementation according to the parameters you give it, which talks to the supplied Terminal.

	Parameters

	
	name – The name of the scheduler. One of directgnu,
slurm, or torque.

	terminal – The terminal this Scheduler will communicate on.

	prefix – A string to prefix any shell commands with.

	Returns

	The Scheduler.

	
class cerulean.Credential

	Bases: abc.ABC

A credential for connecting to remote machines.

Credentials don’t have much in common other than a username, which is best modelled as a public attribute. So this interface is empty, and only here to provide a generic type to represent any credential in the API.

	
username

	The name of the user to connect as.

	
class cerulean.EntryType

	Bases: enum.Enum

An enumeration.

	
BLOCK_DEVICE = 5

	

	
CHARACTER_DEVICE = 4

	

	
DIRECTORY = 1

	

	
FIFO = 6

	

	
FILE = 2

	

	
SOCKET = 7

	

	
SYMBOLIC_LINK = 3

	

	
class cerulean.PasswordCredential(username: str, password: str)

	Bases: cerulean.credential.Credential

A credential comprising a username and password.

	
username

	The name of the user to connect as

	
password

	The password to authenticate with

	
class cerulean.Permission

	Bases: enum.Enum

An enumeration.

	
GROUP_EXECUTE = 8

	

	
GROUP_READ = 32

	

	
GROUP_WRITE = 16

	

	
OTHERS_EXECUTE = 1

	

	
OTHERS_READ = 4

	

	
OTHERS_WRITE = 2

	

	
OWNER_EXECUTE = 64

	

	
OWNER_READ = 256

	

	
OWNER_WRITE = 128

	

	
SGID = 1024

	

	
STICKY = 512

	

	
SUID = 2048

	

	
class cerulean.PubKeyCredential(username: str, public_key: str, passphrase: str = None)

	Bases: cerulean.credential.Credential

A credential using a public/private key pair.

	
username

	The name of the user to connect as

	
public_key

	The (local) path to a key file

	
passphrase

	The passphrase to decrypt the key with; optional.

	
class cerulean.DirectGnuScheduler(terminal: cerulean.terminal.Terminal, prefix: str = '')

	Bases: cerulean.scheduler.Scheduler

A scheduler that runs processes directly on a GNU system.

This scheduler does not have a queue, instead it launches each job immediately as a process, and uses ps and kill to manage it.
This should work fine on any normal GNU/Linux system, but in some
cases you may need an extra command to make bash, ps and/or kill
available (e.g. setting a PATH). If so, you can specify prefix, and
it will be prepended onto these commands. Note that this is a
simple string concatenation, so you may need a semicolon at the
end depending your exact prefix command.

	
cancel(job_id: str) → None

	Cancel a running job.

Submits a cancellation request for a job to the scheduler.

	Parameters

	job_id – Id of the job to be cancelled.

	
get_exit_code(job_id: str) → Optional[int]

	Get the exit code of a finished job.

Once a job is done, its exit code may be requested using this method. If the job is still running or failed to start, then there is no exit code, and None will be returned.

	Parameters

	job_id – A job id string obtained from submit().

	Returns

	The exit code, or None if there is none.

	
get_status(job_id: str) → cerulean.job_status.JobStatus

	Look up the status of a job.

This method is used to check if a job is still in the queue, running, or done.

	Parameters

	job_id – A job id string obtained from submit().

	Returns

	The status of the job as a JobStatus

	
submit(job_description: cerulean.job_description.JobDescription) → str

	Submit a job for execution.

	Parameters

	job_description – A description of the job to run.

	Returns

	A job id that can be used to keep track of it.

	
class cerulean.FileSystem

	Bases: abc.ABC

Represents a file system.

This is a generic interface class that all file systems inherit from, so you can use it wherever any file system will do.

In order to do something useful, you’ll want an actual file system,
like a LocalFileSystem or an SftpFileSystem.

FileSystems may hold resources, so you should either use them with a with statement, or call close() on the returned object when you are done with it.

Beyond that, file systems support a single operation:

fs / 'path'

which produces a Path, through which you can do things with files.

	
close() → None

	Close connections and free resources, if any.

FileSystem objects may hold resources that need to be freed when you are done with the object. You can free them by calling this function, or you can use the FileSystem as a context manager using a with statement.

	
root() → cerulean.path.Path

	Returns a Path representing the root of the file system.

	
class cerulean.JobDescription

	Bases: object

Describes a job to submit to a scheduler.

	
name

	The name of the job, with which it will show up in the scheduler’s queue. Cerulean does not use the name, but it may be useful if you manually check the queue.

	Type

	str

	
working_directory

	The working directory to execute in.

	Type

	str

	
environment

	A dictionary of environment variables to define, and their values.

	Type

	Dict[str, str]

	
command

	The command to execute.

	Type

	str

	
arguments

	A list of arguments to pass. If needed, you need to add quotes yourself, the arguments will not be escaped by cerulean.

	Type

	list of str

	
stdout_file

	File to direct standard output to.

	Type

	str

	
stderr_file

	File to direct standard error to.

	Type

	str

	
queue_name

	Name of the queue to submit to.

	Type

	str

	
time_reserved

	Time to reserve, in seconds.

	Type

	int

	
num_nodes

	The number of nodes to reserve.

	Type

	int

	
mpi_processes_per_node

	Number of MPI processes to start per node.

	Type

	int

	
system_out_file

	File to direct the standard output of the scheduler to.

	Type

	str

	
system_err_file

	File to direct the standard error of the scheduler to.

	Type

	str

	
extra_scheduler_options

	Additional options to add to the scheduler command line on job submission. Note that these are scheduler-specific!

	Type

	str

	
Note that stdout_file and stderr_file will receive the output of the process you are starting, while system_out_file and system_err_file will receive messages from the scheduler

	
	Type

	e.g. that the job ran out of its time limit and was killed

	
class cerulean.JobStatus

	Bases: enum.Enum

An enumeration.

	
DONE = 3

	

	
RUNNING = 2

	

	
WAITING = 1

	

	
class cerulean.LocalFileSystem

	Bases: cerulean.file_system_impl.FileSystemImpl

Represents the local file system.

To create an instance, just call LocalFileSystem().

LocalFileSystem support a single operation:

fs / 'path'

which produces a Path, through which you can do things with local files.

LocalFileSystem is a context manager, so you can use it in a with statement, and it has a close() method, but since it doesn’t hold any resources, you do not need to use them. It may be good to do so anyway, to avoid leaks if you ever replace it with a different FileSystem that does.

	
root() → cerulean.path.Path

	Returns a Path representing the root of the file system.

	
class cerulean.LocalTerminal

	Bases: cerulean.terminal.Terminal

A Terminal for running commands on the local machine.

To create one, just do term = LocalTerminal().

	
run(timeout: float, command: str, args: List[str], stdin_data: str = None, workdir: str = None) → Tuple[Optional[int], str, str]

	Run a shell command.

The command will be run in the default shell, and arguments are
not quoted automatically. If you have untrusted or unknown
input, be sure to quote it using quote() from the shlex
module of the Python standard library.

	Parameters

	
	timeout – How long to wait for the result(s)

	command – The command to run.

	args – A list of arguments to pass

	stdin_data – Data to pass to standard input

	workdir – Working directory to execute in

	Returns

	A tuple containing the exit code, standard output, and standard error output.

	
class cerulean.Path(filesystem: FileSystemImpl, path: Union[pathlib.Path, pathlib.PurePosixPath, pathlib.PureWindowsPath])

	Bases: object

A path on a file system.

This class implements the pathlib.PurePosixPath interface fully, and a pathlib.PosixPath-like interface, although it has some omissions, additions, and improvements to make it more compatible with remote and non-standard file systems.

To make a Path, create a FileSystem first, then use the / operator on it, e.g. fs / ‘home’ / ‘user’. Do not construct objects of this class directly.

Paths can be compared for (non-)equality using == and !=. Paths that compare unequal could still refer to the same file, if it is accessible in multiple ways. For instance, a local path /tmp would compare unequal to a path /tmp on an SftpFileSystem, even if the SftpFileSystem is connected to localhost, and the paths do in fact refer to the same directory.

	
filesystem

	The file system that this path is on.

	
anchor

	The concatenation of the drive and the root.

	
as_posix() → str

	Returns the path as a string with forward slashes.

	
as_uri() → str

	Returns a URI representing the path.

This is not yet implemented, please file an issue if you need it.

	
chmod(mode: int) → None

	Sets permissions.

	Parameters

	mode – The numerical mode describing the permissions to set. This uses standard POSIX mode definitions, see man chmod.

	
drive

	The drive letter (including the colon), if any.

	
entry_type() → cerulean.path.EntryType

	Returns the kind of directory entry type the path points to.

	Returns

	An EntryType enum value describing the filesystem entry.

	Raises

	FileNotFoundError – If there is no file here.

	
exists() → bool

	Returns true iff a filesystem object exists at this path.

If the path denotes a symlink, returns whether the symlink points to an existing filesystem object, recursively. If the symlink is part of a link loop, returns False.

	Returns

	True iff the path exists on the filesystem.

	
gid() → Optional[int]

	Returns the group id associated with the object.

	Returns

	An integer with the id, or None of not supported.

	
has_permission(permission: cerulean.path.Permission) → bool

	Checks permissions.

	Parameters

	permission – A particular file permission, see Permission

	Returns

	True iff the object exists and has the given permission.

	
is_absolute() → bool

	Returns whether the path is absolute.

	
is_dir() → bool

	Returns whether the path is a directory.

	Returns

	True iff the path exists and is a directory, or a symbolic link pointing to a directory.

	
is_file() → bool

	Returns whether the path is a file.

	Returns

	True iff the path exists and is a file, or a symbolic link pointing to a file.

	
is_reserved() → bool

	Return whether the path is reserved.

This can only happen on Windows on a LocalFileSystem.

	
is_symlink() → bool

	Returns whether the path is a symlink.

	Returns

	True iff the path exists and is a symbolic link.

	
iterdir() → Generator[cerulean.path.Path, None, None]

	Iterates through a directory’s contents.

	Yields

	Paths of entries in the directory.

	
joinpath(*other) → cerulean.path.Path

	Joins another path or string onto the back of this one.

	Parameters

	other – The other path to append to this one.

	Returns

	The combined path.

	
mkdir(mode: Optional[int] = None, parents: bool = False, exists_ok: bool = False) → None

	Makes a directory with the given access rights.

If mode is not set or None, assigns permissions according to the current umask. If parents is True, makes parent directories as needed. If exists_ok is True, silently ignores if the directory already exists.

	Parameters

	
	mode – A numerical Posix access permissions mode.

	parents – Whether to make parent directories.

	exists_ok – Don’t raise if target already exists.

	
name

	The name of the file or directory.

This excludes parents but includes the suffix.

	
parent

	The logical parent of the path.

	
parents

	A sequence containing the logical ancestors of the path.

	
parts

	A tuple containing the path’s components.

	
read_bytes() → bytes

	Reads file contents as a bytes object.

	Returns

	The contents of the file.

	
read_text(encoding: str = 'utf-8') → str

	Reads file contents as a string.

Assumes UTF-8 encoding.

	Parameters

	encoding – The encoding to assume.

	Returns

	The contents of the file.

	
readlink(recursive: bool = False) → cerulean.path.Path

	Reads the target of a symbolic link.

Note that the result may be a relative path, which should then be taken relative to the directory containing the link.

If recursive is True, this function will follow a chain of symlinks until it reaches something that is not a symlink, or until the maximum recursion depth is reached and a RunTimeError is raised.

	Parameters

	recursive – Whether to resolve recursively.

	Returns

	The path that the symlink points to.

	Raises

	RunTimeError – The recursion depth was reached, probably as a result of a link loop.

	
relative_to(*other) → cerulean.path.Path

	Returns a version of this path relative to another path.

Both paths must be on the same file system.

	Parameters

	other – The path to use as a reference.

	
remove() → None

	Removes a file, link, device or directory.

Directories are removed recursively, links, devices and files
are deleted. Link targets are left in place. Returns without
error if there is nothing there already.

Use this method to ensure that there is no entry at this path.

	
rename(target: cerulean.path.Path) → None

	Renames a file.

The new path must be in the same filesystem. If the new path exists, then it will be overwritten.

	Parameters

	target – The new path of the file.

	
rmdir(recursive: bool = False) → None

	Removes a directory.

If recursive is True, remove all files and directories inside as well. If recursive is False, the directory must be empty.

	
root

	A string representing the root of the filesystem.

	
set_permission(permission: cerulean.path.Permission, value: bool = True) → None

	Sets permissions.

	Parameters

	
	permission – The permission to set.

	value – Whether to enable or disable the permission.

	
size() → int

	Returns the size of the file.

	Returns

	An integer with the number of bytes in the file.

	
stem

	The stem of this path.

This is the name of the file or directory, excluding
parents and excluding the suffix.

	
streaming_read() → Generator[bytes, None, None]

	Streams data from a file.

This is a generator function that generates bytes objects containing consecutive chunks of the file.

	
streaming_write(data: Iterable[bytes]) → None

	Streams data to a file.

Creates a new file (overwriting any existing file) at the current path, and writes data to it from the given iterable.

	Parameters

	data – An iterable of bytes containing data to be written.

	
suffix

	The file extension of the file or directory, if any.

	
suffixes

	A list of all the extensions in the file name.

	
symlink_to(target: cerulean.path.Path) → None

	Makes a symlink from the current path to the target.

If this raises an OSError with the message Failed, then the problem may be that the target does not exist.

	Parameters

	target – The path to symlink to.

	Raises

	FileExistsError – if you try to overwrite an existing entry with a symlink.

	
touch() → None

	Updates the access and modification times of file.

If the file does not exist, it will be created, which is often what this function is used for.

	
uid() → Optional[int]

	Returns the user id of the owner of the object.

	Returns

	An integer with the id, or None if not supported.

	
unlink() → None

	Removes a file or device node.

For removing directories, see rmdir().

	
walk(topdown: bool = True, onerror: Optional[Callable[[OSError], None]] = None, followlinks: bool = False) → Generator[Tuple[cerulean.path.Path, List[str], List[str]], None, None]

	Walks a directory hierarchy recursively.

This is a version of Python’s os.walk() function adapted to be a little bit more pathlib-like. It walks the directory and its subdirectories, yielding a tuple (dirpath, dirnames, filenames) for each directory. These are the path of the directory, as a Path, a list of strings containing the names of the subdirectories inside this directory, and a list of strings containing the names of the non-directories in this directory respectively.

If topdown is True, the triple for a directory will be produced before the triples of its subdirectories; if it is False, it will be produced after (pre- and post-order traversal respectively).

If onerror is set, the function it is set to will be called if an error occurs, and passed an instance of OSError. The callback can handle the error in some way, or raise it to end the traversal. The OSError object will have an attribute filename containing the name of the file that triggered the problem as a string.

If followlinks is True, this function will recurse into symlinks that point to directories, if it is False, it will silently skip them.

	Yields

	Tuples (dirpath, dirnames, filenames), as above.

	
with_name(name: str) → cerulean.path.Path

	Return a new path with the last component set to name.

	Parameters

	name – The new name to use.

	
with_suffix(suffix: str) → cerulean.path.Path

	Return a new path with the suffix set to suffix

	Parameters

	suffix – The new suffix to use.

	
write_bytes(data: bytes) → None

	Writes bytes to the file.

Overwrites the file if it exists.

	Parameters

	data – The data to be written.

	
write_text(text: str, encoding: str = 'utf-8') → None

	Writes text to a file.

Overwrites the file if it exists.

	Parameters

	
	text – The text to be written.

	encoding – The encoding to use.

	
class cerulean.Scheduler

	Bases: abc.ABC

Interface for job schedulers.

To run jobs using a scheduler, you will want to use SlurmScheduler or TorqueScheduler.

	
cancel(job_id: str) → None

	Cancel a running job.

Submits a cancellation request for a job to the scheduler.

	Parameters

	job_id – Id of the job to be cancelled.

	
get_exit_code(job_id: str) → Optional[int]

	Get the exit code of a finished job.

Once a job is done, its exit code may be requested using this method. If the job is still running or failed to start, then there is no exit code, and None will be returned.

	Parameters

	job_id – A job id string obtained from submit().

	Returns

	The exit code, or None if there is none.

	
get_status(job_id: str) → cerulean.job_status.JobStatus

	Look up the status of a job.

This method is used to check if a job is still in the queue, running, or done.

	Parameters

	job_id – A job id string obtained from submit().

	Returns

	The status of the job as a JobStatus

	
submit(job_description: cerulean.job_description.JobDescription) → str

	Submit a job for execution.

	Parameters

	job_description – A description of the job to run.

	Returns

	A job id that can be used to keep track of it.

	
wait(job_id: str, time_out: float = -1.0, interval: float = None) → Optional[int]

	Wait until the job is done.

Will wait approximately time_out seconds for the job to finish.
Returns the exit code if the job finished, otherwise None.

The state of the job will be checked every interval seconds.
If interval is None, or not specified, then the interval will
be 1s, or time_out / 50, whichever is larger. If time_out is
not given, the interval will start at 1s, then increase
gradually to about 30s.

	Parameters

	
	job_id – The job to wait for.

	time_out – Time to wait in seconds. If negative, wait forever.

	interval – Time to wait between checks. See above.

	Returns

	The exit code of the job.

	
class cerulean.SftpFileSystem(terminal: cerulean.ssh_terminal.SshTerminal, own_term: bool = False)

	Bases: cerulean.file_system_impl.FileSystemImpl

A FileSystem implementation that connects to an SFTP server.

SftpFileSystem supports the / operation:

fs / 'path'

which produces a Path, through which you can do things with the remote files.

It is also a context manager, so that you can (and should!) use it with a with statement, which will ensure that the connection is closed when you are done with the it. Alternatively, you can call close() to close the connection.

If own_term is True, this class assumes that it owns the terminal you gave it, and that it is responsible for closing it when it’s done with it. If you share an SshTerminal between an SftpFileSystem and a scheduler, or use the terminal directly yourself, then you want to use False here, and close the terminal yourself when you don’t need it any more.

	Parameters

	
	terminal – The terminal to connect through.

	own_term – Whether to close the terminal when the file system is closed.

	
close() → None

	Close connections and free resources, if any.

FileSystem objects may hold resources that need to be freed when you are done with the object. You can free them by calling this function, or you can use the FileSystem as a context manager using a with statement.

	
root() → cerulean.path.Path

	Returns a Path representing the root of the file system.

	
class cerulean.SlurmScheduler(terminal: cerulean.terminal.Terminal, prefix: str = '')

	Bases: cerulean.scheduler.Scheduler

Represents a Slurm scheduler.

This class represents a Slurm scheduler, to which it talks through a Terminal.

On some machines, an additional command is needed to make Slurm
available to the user, e.g. ‘module load slurm’. If you specify a
prefix, it will be prepended to any Slurm command run by this
class. Note that this is a plain string concatenation, so you’ll
probably need something like ‘module load slurm;’, with a
semicolon to separate the commands.

	
cancel(job_id: str) → None

	Cancel a running job.

Submits a cancellation request for a job to the scheduler.

	Parameters

	job_id – Id of the job to be cancelled.

	
get_exit_code(job_id: str) → Optional[int]

	Get the exit code of a finished job.

Once a job is done, its exit code may be requested using this method. If the job is still running or failed to start, then there is no exit code, and None will be returned.

	Parameters

	job_id – A job id string obtained from submit().

	Returns

	The exit code, or None if there is none.

	
get_status(job_id: str) → cerulean.job_status.JobStatus

	Look up the status of a job.

This method is used to check if a job is still in the queue, running, or done.

	Parameters

	job_id – A job id string obtained from submit().

	Returns

	The status of the job as a JobStatus

	
submit(job_description: cerulean.job_description.JobDescription) → str

	Submit a job for execution.

	Parameters

	job_description – A description of the job to run.

	Returns

	A job id that can be used to keep track of it.

	
class cerulean.SshTerminal(host: str, port: int, credential: cerulean.credential.Credential)

	Bases: cerulean.terminal.Terminal

A terminal that runs commands over SSH.

This terminal connects to a host using SSH, then lets you run commands there.

	Parameters

	
	host – The hostname to connect to.

	port – The port to connect on.

	credential – The credential to authenticate with.

	
close() → None

	Close the terminal.

This closes any connections and frees resources associated with the terminal.

	
run(timeout: float, command: str, args: List[str], stdin_data: str = None, workdir: str = None) → Tuple[Optional[int], str, str]

	Run a shell command.

The command will be run in the default shell, and arguments are
not quoted automatically. If you have untrusted or unknown
input, be sure to quote it using quote() from the shlex
module of the Python standard library.

	Parameters

	
	timeout – How long to wait for the result(s)

	command – The command to run.

	args – A list of arguments to pass

	stdin_data – Data to pass to standard input

	workdir – Working directory to execute in

	Returns

	A tuple containing the exit code, standard output, and standard error output.

	
class cerulean.Terminal

	Bases: abc.ABC

Interface for Terminals.

This is a generic interface class that all terminals inherit from, so you can use it wherever any terminal will do.

In order to do something useful, you’ll want an actual terminal,
like a LocalTerminal or an SshTerminal.

Terminals may hold resources, so you should either use them with a with statement, or call close() on them when you are done with them.

	
close() → None

	Close the terminal.

This closes any connections and frees resources associated with the terminal. LocalTerminal does not require this, but terminals that connect to remote machines do. You may want to always either close a Terminal, or use it as a context manager, to avoid problems if you ever change from a local terminal to a remote one.

	
run(timeout: float, command: str, args: List[str], stdin_data: str = None, workdir: str = None) → Tuple[Optional[int], str, str]

	Run a shell command.

The command will be run in the default shell, and arguments are
not quoted automatically. If you have untrusted or unknown
input, be sure to quote it using quote() from the shlex
module of the Python standard library.

	Parameters

	
	timeout – How long to wait for the result(s)

	command – The command to run.

	args – A list of arguments to pass

	stdin_data – Data to pass to standard input

	workdir – Working directory to execute in

	Returns

	A tuple containing the exit code, standard output, and standard error output.

	
class cerulean.TorqueScheduler(terminal: cerulean.terminal.Terminal, prefix: str = '')

	Bases: cerulean.scheduler.Scheduler

Represents a Torque scheduler.

This class represents a Torque scheduler, to which it talks through a Terminal.

On some machines, an additional command is needed to make Torque
available to the user, e.g. ‘module load torque’. If you specify a
prefix, it will be prepended to any Torque command run by this
class. Note that this is a plain string concatenation, so you’ll
probably need something like ‘module load torque;’, with a
semicolon to separate the commands.

	Parameters

	
	terminal – The terminal to use to talk to the scheduler.

	prefix – A string to prefix the Torque commands with.

	
cancel(job_id: str) → None

	Cancel a running job.

Submits a cancellation request for a job to the scheduler.

	Parameters

	job_id – Id of the job to be cancelled.

	
get_exit_code(job_id: str) → Optional[int]

	Get the exit code of a finished job.

Once a job is done, its exit code may be requested using this method. If the job is still running or failed to start, then there is no exit code, and None will be returned.

	Parameters

	job_id – A job id string obtained from submit().

	Returns

	The exit code, or None if there is none.

	
get_status(job_id: str) → cerulean.job_status.JobStatus

	Look up the status of a job.

This method is used to check if a job is still in the queue, running, or done.

	Parameters

	job_id – A job id string obtained from submit().

	Returns

	The status of the job as a JobStatus

	
submit(job_description: cerulean.job_description.JobDescription) → str

	Submit a job for execution.

	Parameters

	job_description – A description of the job to run.

	Returns

	A job id that can be used to keep track of it.

	
exception cerulean.UnsupportedOperationError

	Bases: RuntimeError

Raised when an unsupported method is called.

See WebdavFileSystem.

	
class cerulean.WebdavFileSystem(url: str, credential: Optional[cerulean.credential.Credential] = None, host_ca_cert_file: Optional[str] = None, unsupported_methods_raise: Optional[bool] = True)

	Bases: cerulean.file_system_impl.FileSystemImpl

A FileSystem implementation that connects to a WebDAV server.

WebdavFileSystem supports the / operation:

fs / 'path'

which produces a Path, through which you can do things with the remote files.

It is also a context manager, so that you can (and should!) use it with a with statement, which will ensure that the connection is closed when you are done with the it. Alternatively, you can call close() to close the connection.

The WebDAV protocol does not support all operations specified by the Cerulean API. In particular, symbolic links are not supported, nor are ownership and permissions. Read-access to these properties is emulated, e.g. is_symlink() simply always returns false, all files and directories are owned by uid 0 and gid 0, with access permissions determined by whether the server will let us access them.

By default, if you try to run any of the related modifying methods, e.g. symlink_to() or set_permissions(), an UnsupportedOperationError will be raised. If you set unsupported_methods_raise to False when creating a WebdavFileSystem, then these methods will simply return without doing anything.

WebdavFileSystem supports both HTTP and HTTPS, but not (yet) client-side certificates.

	Parameters

	
	url – The server base location, e.g. http://example.com/webdav

	credential – The credential to use to connect.

	host_ca_cert_file – Path to a certificate file to use for authentication. Useful for servers that use a self-signed certificate.

	unsupported_methods_raise – Raise on using an unsupported method, see above.

	
close() → None

	Close connections and free resources, if any.

FileSystem objects may hold resources that need to be freed when you are done with the object. You can free them by calling this function, or you can use the FileSystem as a context manager using a with statement.

	
root() → cerulean.path.Path

	Returns a Path representing the root of the file system.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 cerulean	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	anchor (cerulean.Path attribute)

 	arguments (cerulean.JobDescription attribute)

 	
 	as_posix() (cerulean.Path method)

 	as_uri() (cerulean.Path method)

B

 	
 	BLOCK_DEVICE (cerulean.EntryType attribute)

C

 	
 	cancel() (cerulean.DirectGnuScheduler method)

 	(cerulean.Scheduler method)

 	(cerulean.SlurmScheduler method)

 	(cerulean.TorqueScheduler method)

 	cerulean (module)

 	CHARACTER_DEVICE (cerulean.EntryType attribute)

 	chmod() (cerulean.Path method)

 	
 	close() (cerulean.FileSystem method)

 	(cerulean.SftpFileSystem method)

 	(cerulean.SshTerminal method)

 	(cerulean.Terminal method)

 	(cerulean.WebdavFileSystem method)

 	command (cerulean.JobDescription attribute)

 	copy() (in module cerulean)

 	Credential (class in cerulean)

D

 	
 	DirectGnuScheduler (class in cerulean)

 	DIRECTORY (cerulean.EntryType attribute)

 	
 	DONE (cerulean.JobStatus attribute)

 	drive (cerulean.Path attribute)

E

 	
 	entry_type() (cerulean.Path method)

 	EntryType (class in cerulean)

 	
 	environment (cerulean.JobDescription attribute)

 	exists() (cerulean.Path method)

 	extra_scheduler_options (cerulean.JobDescription attribute)

F

 	
 	FIFO (cerulean.EntryType attribute)

 	FILE (cerulean.EntryType attribute)

 	
 	filesystem (cerulean.Path attribute)

 	FileSystem (class in cerulean)

G

 	
 	get_exit_code() (cerulean.DirectGnuScheduler method)

 	(cerulean.Scheduler method)

 	(cerulean.SlurmScheduler method)

 	(cerulean.TorqueScheduler method)

 	get_status() (cerulean.DirectGnuScheduler method)

 	(cerulean.Scheduler method)

 	(cerulean.SlurmScheduler method)

 	(cerulean.TorqueScheduler method)

 	
 	gid() (cerulean.Path method)

 	GROUP_EXECUTE (cerulean.Permission attribute)

 	GROUP_READ (cerulean.Permission attribute)

 	GROUP_WRITE (cerulean.Permission attribute)

H

 	
 	has_permission() (cerulean.Path method)

I

 	
 	is_absolute() (cerulean.Path method)

 	is_dir() (cerulean.Path method)

 	is_file() (cerulean.Path method)

 	
 	is_reserved() (cerulean.Path method)

 	is_symlink() (cerulean.Path method)

 	iterdir() (cerulean.Path method)

J

 	
 	JobDescription (class in cerulean)

 	
 	JobStatus (class in cerulean)

 	joinpath() (cerulean.Path method)

L

 	
 	LocalFileSystem (class in cerulean)

 	
 	LocalTerminal (class in cerulean)

 	logger (in module cerulean)

M

 	
 	make_file_system() (in module cerulean)

 	make_scheduler() (in module cerulean)

 	
 	make_terminal() (in module cerulean)

 	mkdir() (cerulean.Path method)

 	mpi_processes_per_node (cerulean.JobDescription attribute)

N

 	
 	name (cerulean.JobDescription attribute)

 	(cerulean.Path attribute)

 	
 	num_nodes (cerulean.JobDescription attribute)

O

 	
 	OTHERS_EXECUTE (cerulean.Permission attribute)

 	OTHERS_READ (cerulean.Permission attribute)

 	OTHERS_WRITE (cerulean.Permission attribute)

 	
 	OWNER_EXECUTE (cerulean.Permission attribute)

 	OWNER_READ (cerulean.Permission attribute)

 	OWNER_WRITE (cerulean.Permission attribute)

P

 	
 	parent (cerulean.Path attribute)

 	parents (cerulean.Path attribute)

 	parts (cerulean.Path attribute)

 	passphrase (cerulean.PubKeyCredential attribute)

 	password (cerulean.PasswordCredential attribute)

 	
 	PasswordCredential (class in cerulean)

 	Path (class in cerulean)

 	Permission (class in cerulean)

 	PubKeyCredential (class in cerulean)

 	public_key (cerulean.PubKeyCredential attribute)

Q

 	
 	queue_name (cerulean.JobDescription attribute)

R

 	
 	read_bytes() (cerulean.Path method)

 	read_text() (cerulean.Path method)

 	readlink() (cerulean.Path method)

 	relative_to() (cerulean.Path method)

 	remove() (cerulean.Path method)

 	rename() (cerulean.Path method)

 	rmdir() (cerulean.Path method)

 	root (cerulean.Path attribute)

 	
 	root() (cerulean.FileSystem method)

 	(cerulean.LocalFileSystem method)

 	(cerulean.SftpFileSystem method)

 	(cerulean.WebdavFileSystem method)

 	run() (cerulean.LocalTerminal method)

 	(cerulean.SshTerminal method)

 	(cerulean.Terminal method)

 	RUNNING (cerulean.JobStatus attribute)

S

 	
 	Scheduler (class in cerulean)

 	set_permission() (cerulean.Path method)

 	SftpFileSystem (class in cerulean)

 	SGID (cerulean.Permission attribute)

 	size() (cerulean.Path method)

 	SlurmScheduler (class in cerulean)

 	SOCKET (cerulean.EntryType attribute)

 	SshTerminal (class in cerulean)

 	stderr_file (cerulean.JobDescription attribute)

 	stdout_file (cerulean.JobDescription attribute)

 	stem (cerulean.Path attribute)

 	STICKY (cerulean.Permission attribute)

 	
 	streaming_read() (cerulean.Path method)

 	streaming_write() (cerulean.Path method)

 	submit() (cerulean.DirectGnuScheduler method)

 	(cerulean.Scheduler method)

 	(cerulean.SlurmScheduler method)

 	(cerulean.TorqueScheduler method)

 	suffix (cerulean.Path attribute)

 	suffixes (cerulean.Path attribute)

 	SUID (cerulean.Permission attribute)

 	SYMBOLIC_LINK (cerulean.EntryType attribute)

 	symlink_to() (cerulean.Path method)

 	system_err_file (cerulean.JobDescription attribute)

 	system_out_file (cerulean.JobDescription attribute)

T

 	
 	Terminal (class in cerulean)

 	time_reserved (cerulean.JobDescription attribute)

 	
 	TorqueScheduler (class in cerulean)

 	touch() (cerulean.Path method)

U

 	
 	uid() (cerulean.Path method)

 	unlink() (cerulean.Path method)

 	UnsupportedOperationError

 	
 	username (cerulean.Credential attribute)

 	(cerulean.PasswordCredential attribute)

 	(cerulean.PubKeyCredential attribute)

W

 	
 	wait() (cerulean.Scheduler method)

 	WAITING (cerulean.JobStatus attribute)

 	walk() (cerulean.Path method)

 	WebdavFileSystem (class in cerulean)

 	
 	with_name() (cerulean.Path method)

 	with_suffix() (cerulean.Path method)

 	working_directory (cerulean.JobDescription attribute)

 	write_bytes() (cerulean.Path method)

 	write_text() (cerulean.Path method)

 nav.xhtml

 Table of Contents

 		
 Welcome to Cerulean’s documentation!

 		
 Tutorial

 		
 Accessing files

 		
 Remote filesystems

 		
 Copying files

 		
 Running commands

 		
 Submitting jobs

 		
 More information

 		
 API reference

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

